

A buffer is a solution of weak acid and its salt with strong base and vice versa. 1.(A)

HCl is a strong acid and NaCl is its salt with strong base so pH is less than 7 due to HCl.

2. (A)
$$HSO_4^- \to H^+ + SO_4^{2-}$$

(D)
$${}^{-}OH + H^{+} \rightarrow H_{2}O$$

Both (A) and (D)

3. (A)
$$Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^{-}_{S}$$

$$K_{sp} = [Mg^{2+}] \, [OH^{-1}]^2 \qquad \qquad = S \times (2S)^2 = 4S^3 = 4X^3$$

4. (C)
$$K_{sp} = 4S^2 = 4 \times (10^{-5})^3 = 4 \times 10^{-15} M^3$$

NH₃ is strongest base among these. 5. (A)

6. (A) pH of
$$1 \times 10^8$$
 M HCl is $7 \simeq$ (HCl is acid)

7. (C) Thunderstorm produces acidic oxides which on dissolution in water form acidic rains i.e., pH < 7.

8. (A)
$$H_2PO_4^- \to H^+ + HPO_4^{2-}$$
 Base

9. (A)
$$MX_4 \rightleftharpoons M_S^{4+} + 4X_{4S}^{-}$$

$$K_{sp} = [M^{4+}][X^{-}]^{4} = S \times (4S)^{4} = 256 S^{5}.$$

10. (B)
$$MX_2 \rightleftharpoons M_S^{2+} + 2X_{2S}^{-}$$

$$K_{sp} = MS_2 = 4S^3 = 4 \times 10^{-12}$$

$$S = 10^{-4}$$

$$\therefore S = 10^{-4}$$
 $\therefore [M^{2+}] = 10^{-4} M$

11. (D) pH =
$$5.4 = -\log [H^+]$$
 : $[H^+] = antilog (-5.4) = $3.98 \times 10^{-6}$$

12. (D)
$$OH^- \rightarrow O^{2-} + H$$

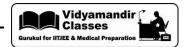
Acid Conjugate base

13. (C) For buffer solution

$$pH = pK_a + log \frac{[Salt]}{[Acid]} = 4.5 + log \frac{[Salt]}{[Acid]}$$

As HA is 50% ionized, so [Salt] = [Acid]

$$pH = 4.5$$


$$pH + pOH = 14$$
 : $pOH = 14 - 4.5 = 9.5$

14. (B) $AgIO_{3(S)} \rightleftharpoons Ag^{+}_{(aq)} + IO^{-}_{3(sq)}$

Let the solubility of $AgIO_3$ be S

$$K_{sp} = [Ag^+][IO_3^-]$$

$$K_{sp} = S \times S$$

or
$$S = \sqrt{K_{sp}}$$

$$S = \sqrt{1.0 \times 10^{-8}} = 1.0 \times 10^{-4} \text{ mol/litre} = 1.0 \times 10^{-4} \times 2.83 \text{ g/litre}$$

$$= \frac{1.0 \times 10^{-4} \times 283}{1000} \times 100 \text{ g/100ml} = 2.83 \times 10^{-3} \text{ g/100 ml}$$

15. (C) In aqueous solution, BA(salt) hydrolyses to give

$$\mathrm{BA} + \mathrm{H_2O} \rightleftharpoons \mathrm{BOH} + \mathrm{HA}_{\mathrm{Base}}$$

Now pH since by

$$pH = \frac{1}{2} \ pK_w + \frac{1}{2} pK_a - \frac{1}{2} \ pK_b$$

Substituting the given values, we get

$$pH = \frac{1}{2} (14 + 4.80 - 4.78) = 7.01$$

VMC | Chemistry 115 Ionic Equilibrium